Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
J Mol Graph Model ; 124: 108540, 2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: covidwho-20244484

RESUMEN

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has raised concerns worldwide due to its enhanced transmissibility and immune escapability. The first dominant Omicron BA.1 subvariant harbors more than 30 mutations in the spike protein from the prototype virus, of which 15 mutations are located at the receptor binding domain (RBD). These mutations in the RBD region attracted significant attention, which potentially enhance the binding of the receptor human angiotensin-converting enzyme 2 (hACE2) and decrease the potency of neutralizing antibodies/nanobodies. This study applied the molecular dynamics simulations combined with the molecular mechanics-generalized Born surface area (MMGBSA) method, to investigate the molecular mechanism behind the impact of the mutations acquired by Omicron on the binding affinity between RBD and hACE2. Our results indicate that five key mutations, i.e., N440K, T478K, E484A, Q493R, and G496S, contributed significantly to the enhancement of the binding affinity by increasing the electrostatic interactions of the RBD-hACE2 complex. Moreover, fourteen neutralizing antibodies/nanobodies complexed with RBD were used to explore the effects of the mutations in Omicron RBD on their binding affinities. The calculation results indicate that the key mutations E484A and Y505H reduce the binding affinities to RBD for most of the studied neutralizing antibodies/nanobodies, mainly attributed to the elimination of the original favorable gas-phase electrostatic and hydrophobic interactions between them, respectively. Our results provide valuable information for developing effective vaccines and antibody/nanobody drugs.

2.
Front Immunol ; 14: 1085456, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2327391

RESUMEN

This study aimed to clarify the effects of two processed forms of American ginseng (Panax quinquefolius L.) on immunosuppression caused by cyclophosphamide (CTX) in mice. In the CTX-induced immunosuppressive model, mice were given either steamed American ginseng (American ginseng red, AGR) or raw American ginseng (American ginseng soft branch, AGS) by intragastric administration. Serum and spleen tissues were collected, and the pathological changes in mice spleens were observed by conventional HE staining. The expression levels of cytokines were detected by ELISA, and the apoptosis of splenic cells was determined by western blotting. The results showed that AGR and AGS could relieve CTX-induced immunosuppression through the enhanced immune organ index, improved cell-mediated immune response, increased serum levels of cytokines (TNF-α, IFN-γ, and IL-2) and immunoglobulins (IgG, IgA, and IgM), as well as macrophage activities including carbon clearance and phagocytic index. AGR and AGS downregulated the expression of BAX and elevated the expression of Bcl-2, p-P38, p-JNK, and p-ERK in the spleens of CTX-injected animals. Compared to AGS, AGR significantly improved the number of CD4+CD8-T lymphocytes, the spleen index, and serum levels of IgA, IgG, TNF-α, and IFN-γ. The expression of the ERK/MAPK pathway was markedly increased. These findings support the hypothesis that AGR and AGS are effective immunomodulatory agents capable of preventing immune system hypofunction. Future research may investigate the exact mechanism to rule out any unforeseen effects of AGR and AGS.


Asunto(s)
Panax , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/farmacología , Ciclofosfamida/efectos adversos , Terapia de Inmunosupresión , Citocinas/metabolismo , Macrófagos , Inmunoglobulina G/farmacología , Transducción de Señal , Inmunoglobulina A/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA